/ Home

Python Chart Courses

Python Chart for Beginners

  1. Introduction to Data Visualization in Python
  2. Installing and Setting Up Matplotlib
  3. Line Charts using Matplotlib
  4. Bar and Column Charts using Matplotlib
  5. Pie and Donut Charts using Matplotlib
  6. Histograms and Frequency Distributions
  7. Box Plot and Violin Plot Comparisons
  8. Scatter Plots and Trend Analysis
  9. Area Charts and Stacked Area Charts
  10. Heatmaps for Correlation and Matrix Data
  11. 3D Charts using Matplotlib
  12. Chart Styling, Themes, and Color Palettes
  13. Creating Charts with Seaborn
  14. Regression and Statistical Plots using Seaborn
  15. Interactive Charts using Plotly
  16. Animated Charts with Plotly Express
  17. Geospatial Maps with Plotly and GeoJSON
  18. Dashboards and Interactive Apps using Plotly Dash
  19. Exporting Charts to PDF, PNG, and Web
  20. Choosing the Right Chart for the Right Data

Advanced Python Charts

  1. Advanced Matplotlib Architecture and Custom Rendering
  2. Object-Oriented Matplotlib vs Pyplot API
  3. Multi-Axis, Twin-Axis, and Broken Axis Charts
  4. Advanced Styling with Custom Themes and Fonts
  5. Color Theory and Dynamic Gradient Coloring
  6. Custom Annotations, Shapes, and Overlay Graphics
  7. Creating Reusable Chart Components and Templates
  8. High-Performance Large Dataset Plotting Techniques
  9. Interactive Visualizations with Plotly Advanced Features
  10. Plotly Subplots and Synchronized Interactions
  11. Network Graph Visualizations in Python (NetworkX + Plotly)
  12. Time-Series Visualizations (Zoom, Pan, Hover, Forecasts)
  13. Animated Transition Charts and Storytelling Visuals
  14. Real-Time Streaming Data Charts (WebSockets & APIs)
  15. Advanced Geospatial Mapping (Choropleth, Tiles, Layers)
  16. Machine Learning Visualization (Clusters, Model Evaluation)
  17. Financial Charts (Candlesticks, Indicators, Volume Maps)
  18. Custom Widgets and Dashboards Using Plotly Dash
  19. Publishing Visualizations to Web Apps (Flask, FastAPI, Dash)
  20. Building Your Own Visualization Library Concepts (Render Pipelines)