/ Home
Template
Note: tbw
๐ ๐๐ป๐ด๐ฒ๐๐๐ถ๐ผ๐ป & ๐๐น๐ผ๐ ๐๐ผ๐ป๐๐ฟ๐ผ๐น (optional but critical)
โ Accept scans, PDFs, mobile uploads
โ Split to page-level images
โ Use FastAPI, Ray, or Prefect for routing, batching, and retries
9๏ธโฃ ๐ฃ๐ผ๐๐๐ฝ๐ฟ๐ผ๐ฐ๐ฒ๐๐๐ถ๐ป๐ด & ๐๐ถ๐ฒ๐น๐ฑ ๐๐ผ๐ด๐ถ๐ฐ
โ IOU merging, box clustering, regex cleanup, spatial grouping
โ LM sanity checks, box confidence filtering
โ Outputs as clean JSON, DB inserts, or downstream API payloads
8๏ธโฃ ๐๐ฎ๐๐ผ๐๐ ๐๐ป๐ฎ๐น๐๐๐ถ๐
โ doclayout-yolo, PubLayNet, LayoutParser, TableNet, FastDoc
โ Detect headers, tables, stamps, and multi-column zones
โ Layout adds structure when raw text isnโt enough
7๏ธโฃ ๐ข๐๐ฅ ๐๐ป๐ด๐ถ๐ป๐ฒ๐
โ PaddleOCR, docTR, EasyOCR, TroCR, Tesseract, Surya, OLM-OCR
โ OCR output should include:
โข Page number
โข Bounding boxes
โข Confidence scores
โ This metadata preserves layout structure and document flow
6๏ธโฃ ๐ฃ๐ฟ๐ฒ๐ฝ๐ฟ๐ผ๐ฐ๐ฒ๐๐๐ถ๐ป๐ด
โ OpenCV, CLAHE, deskewing, adaptive thresholding
โ Despeckle, denoise, DPI normalization
โ Clean inputs = stronger OCR and VLM output
5๏ธโฃ ๐๐ถ๐ฒ๐น๐ฑ ๐๐
๐๐ฟ๐ฎ๐ฐ๐๐ถ๐ผ๐ป
โ LayoutLMv3, Donut, spaCy, transformers, TranKIT
โ Or use small LLMs (e.g. LLaMA3 8B) with structured prompts on OCRโd text
โ Doesnโt require full VLM inference โ fast and domain-adaptable
4๏ธโฃ ๐ฅ๐ฒ๐๐ฟ๐ถ๐ฒ๐๐ฎ๐น (๐ฅ๐๐)
โ LlamaIndex, LangChain, FAISS, Qdrant, Weaviate, Milvus
โ Layout-aware chunking > flat text splits
โ Crucial for relevance, especially with multi-page documents
3๏ธโฃ ๐๐๐ ๐ / ๐ฉ๐ค๐ / ๐ฉ๐๐ ๐
โ GPT-4o, Claude 3, PaLI, ColPaLI, Kosmos-2, BLIP-2, LLaVA
โ Understand scanned charts, tables, handwriting
โ Unlock reasoning where OCR-only fails
2๏ธโฃ ๐๐๐ฎ๐น๐๐ฎ๐๐ถ๐ผ๐ป / ๐ค๐
โ Ragas, DeepEval, OCR eval (box-level thresholds), hallucination detection
โ Retrieval scoring, confidence auditing, prompt failure analysis
โ Evaluation isnโt a step, itโs a loop
1๏ธโฃ ๐๐ฒ๐ฝ๐น๐ผ๐๐บ๐ฒ๐ป๐ & ๐ฅ๐๐ป๐๐ถ๐บ๐ฒ
โ LangServe, FastAPI, Ray, Docker, Prefect
โ Needed for scale, retries, fallback routing, observability
โ Treat your pipeline like a real service, not a script
๐ Most teams either overcomplicate or oversimplify.
The best pipelines blend OCR + CV + LLMs into a layout-aware stack.
