/ Home

GenAI Roadmp

Updated: Feb 19, 2025

alt text

Level 1: Gen AI and RAG Foundations

  1. Introduction to Generative AI
  2. Basics of Large Language Models (LLMs)
  3. Fundamentals of Prompt Engineering
  4. Data Handling and Processing
  5. Introduction to API Wrappers
  6. Essentials of RAG

Level 2: AI Agents Specialization

  1. Introduction to AI Agents
  2. Exploring Agent Frameworks
  3. Building a Simple AI Agent
  4. Understanding Agent Workflows
  5. Learning About Agent Memory
  6. Evaluating Agent Performance
  7. Collaborating with Multiple Agents
  8. Implementing RAG in Agents

Set 2:

⏩ 𝗣𝘆𝘁𝗵𝗼𝗻 𝘀𝗸𝗶𝗹𝗹𝘀 ✅ 𝗙𝗮𝘀𝘁𝗔𝗣𝗜 – Build lightweight, production-ready APIs in no time 🔗 Video1: https://www.youtube.com/watch?v=iWS9ogMPOI0 🔗 Video2: https://fastapi.tiangolo.com/tutorial/

✅ 𝗔𝘀𝘆𝗻𝗰 𝗣𝗿𝗼𝗴𝗿𝗮𝗺𝗺𝗶𝗻𝗴 – Speed up agents by handling multiple tasks asynchronously 🔗 Video: https://www.youtube.com/watch?v=Qb9s3UiMSTA

✅ 𝗣𝘆𝗱𝗮𝗻𝘁𝗶𝗰 – Data validation and settings management that keeps your agent robust and reliable 🔗 Video: https://www.youtube.com/watch?v=XIdQ6gO3Anc

✅ 𝗟𝗼𝗴𝗴𝗶𝗻𝗴 – Debugging agents without good logs? Nearly impossible. 🔗 Video: https://www.youtube.com/watch?v=9L77QExPmI0

✅ 𝗧𝗲𝘀𝘁𝗶𝗻𝗴 – Unit and integration tests will save you when agents become complex. 🔗 Unit test: https://www.youtube.com/watch?v=YbpKMIUjvK8 🔗 Integration test: https://www.youtube.com/watch?v=7dgQRVqF1N0

✅ 𝗗𝗮𝘁𝗮𝗯𝗮𝘀𝗲 𝗠𝗮𝗻𝗮𝗴𝗲𝗺𝗲𝗻𝘁 (SQLAlchemy + Alembic) – Essential for RAG and storing agent memories 🔗 Video: https://www.youtube.com/watch?v=i9RX03zFDHU

⏩ 𝗥𝗔𝗚 𝘀𝗸𝗶𝗹𝗹𝘀 ✅ 𝗨𝗻𝗱𝗲𝗿𝘀𝘁𝗮𝗻𝗱𝗶𝗻𝗴 𝗥𝗔𝗚 – Learn what RAG is and why it matters 🔗 Video - https://www.youtube.com/watch?v=T-D1OfcDW1M

✅ 𝗧𝗲𝘅𝘁 𝗘𝗺𝗯𝗲𝗱𝗱𝗶𝗻𝗴𝘀 – Foundation of search and retrieval in RAG systems 🔗 Video - https://www.youtube.com/watch?v=vlcQV4j2kTo

✅ 𝗩𝗲𝗰𝘁𝗼𝗿 𝗗𝗮𝘁𝗮𝗯𝗮𝘀𝗲 – Store and retrieve embeddings efficiently 🔗 Video - https://www.youtube.com/watch?v=gl1r1XV0SLw

✅ 𝗖𝗵𝘂𝗻𝗸𝗶𝗻𝗴 𝗦𝘁𝗿𝗮𝘁𝗲𝗴𝗶𝗲𝘀 – Split data smartly for better retrieval quality 🔗 Video - https://www.youtube.com/watch?v=8OJC21T2SL4

✅ 𝗥𝗔𝗚 𝘄𝗶𝘁𝗵 𝗣𝗼𝘀𝘁𝗴𝗿𝗲𝗦𝗤𝗟 – RAG without expensive vector DBs? Yes, possible. 🔗 Video - https://www.youtube.com/watch?v=hAdEuDBN57g

✅ 𝗥𝗔𝗚 𝘄𝗶𝘁𝗵 𝗟𝗮𝗻𝗴𝗖𝗵𝗮𝗶𝗻 – Chain together retrieval, LLMs, and prompts easily 🔗 Video - https://www.youtube.com/watch?v=sVcwVQRHIc8

✅ 𝗥𝗔𝗚 𝗘𝘃𝗮𝗹𝘂𝗮𝘁𝗶𝗼𝗻𝘀 – Know if your retrieval and answers are actually good 🔗 Video - https://www.youtube.com/watch?v=mEv-2Xnb_Wk

✅ 𝗔𝗱𝘃𝗮𝗻𝗰𝗲𝗱 𝗥𝗔𝗚 𝗧𝗲𝗰𝗵𝗻𝗶𝗾𝘂𝗲𝘀 – Fine-tune your RAG system for real-world performance 🔗 Video - https://www.youtube.com/watch?v=sGvXO7CVwc0

⏩ 𝗔𝗜 𝗔𝗴𝗲𝗻𝘁 𝗙𝗿𝗮𝗺𝗲𝘄𝗼𝗿𝗸 ✅ 𝗟𝗮𝗻𝗴𝗚𝗿𝗮𝗽𝗵 – This one is mainly used in organisations to build production ready AI Agents. 🔗 Video - https://www.youtube.com/watch?v=jGg_1h0qzaM

✅ 𝗣𝗿𝗼𝗺𝗽𝘁 𝗲𝗻𝗴𝗶𝗻𝗲𝗲𝗿𝗶𝗻𝗴 𝗴𝘂𝗶𝗱𝗲 – It’s also good to follow specific guides from the LLM providers. 🔗 Link - https://github.com/dair-ai/Prompt-Engineering-Guide